Abstract:This paper presents the NTIRE 2025 image super-resolution ($\times$4) challenge, one of the associated competitions of the 10th NTIRE Workshop at CVPR 2025. The challenge aims to recover high-resolution (HR) images from low-resolution (LR) counterparts generated through bicubic downsampling with a $\times$4 scaling factor. The objective is to develop effective network designs or solutions that achieve state-of-the-art SR performance. To reflect the dual objectives of image SR research, the challenge includes two sub-tracks: (1) a restoration track, emphasizes pixel-wise accuracy and ranks submissions based on PSNR; (2) a perceptual track, focuses on visual realism and ranks results by a perceptual score. A total of 286 participants registered for the competition, with 25 teams submitting valid entries. This report summarizes the challenge design, datasets, evaluation protocol, the main results, and methods of each team. The challenge serves as a benchmark to advance the state of the art and foster progress in image SR.
Abstract:This paper presents an overview of the NTIRE 2025 Image Denoising Challenge ({\sigma} = 50), highlighting the proposed methodologies and corresponding results. The primary objective is to develop a network architecture capable of achieving high-quality denoising performance, quantitatively evaluated using PSNR, without constraints on computational complexity or model size. The task assumes independent additive white Gaussian noise (AWGN) with a fixed noise level of 50. A total of 290 participants registered for the challenge, with 20 teams successfully submitting valid results, providing insights into the current state-of-the-art in image denoising.
Abstract:Recognizing emotions from speech is a daunting task due to the subtlety and ambiguity of expressions. Traditional speech emotion recognition (SER) systems, which typically rely on a singular, precise emotion label, struggle with this complexity. Therefore, modeling the inherent ambiguity of emotions is an urgent problem. In this paper, we propose an iterative prototype refinement framework (IPR) for ambiguous SER. IPR comprises two interlinked components: contrastive learning and class prototypes. The former provides an efficient way to obtain high-quality representations of ambiguous samples. The latter are dynamically updated based on ambiguous labels -- the similarity of the ambiguous data to all prototypes. These refined embeddings yield precise pseudo labels, thus reinforcing representation quality. Experimental evaluations conducted on the IEMOCAP dataset validate the superior performance of IPR over state-of-the-art methods, thus proving the effectiveness of our proposed method.
Abstract:Multimodal emotion recognition systems rely heavily on the full availability of modalities, suffering significant performance declines when modal data is incomplete. To tackle this issue, we present the Cross-Modal Alignment, Reconstruction, and Refinement (CM-ARR) framework, an innovative approach that sequentially engages in cross-modal alignment, reconstruction, and refinement phases to handle missing modalities and enhance emotion recognition. This framework utilizes unsupervised distribution-based contrastive learning to align heterogeneous modal distributions, reducing discrepancies and modeling semantic uncertainty effectively. The reconstruction phase applies normalizing flow models to transform these aligned distributions and recover missing modalities. The refinement phase employs supervised point-based contrastive learning to disrupt semantic correlations and accentuate emotional traits, thereby enriching the affective content of the reconstructed representations. Extensive experiments on the IEMOCAP and MSP-IMPROV datasets confirm the superior performance of CM-ARR under conditions of both missing and complete modalities. Notably, averaged across six scenarios of missing modalities, CM-ARR achieves absolute improvements of 2.11% in WAR and 2.12% in UAR on the IEMOCAP dataset, and 1.71% and 1.96% in WAR and UAR, respectively, on the MSP-IMPROV dataset.
Abstract:Diplomacy is one of the most sophisticated activities in human society. The complex interactions among multiple parties/ agents involve various abilities like social reasoning, negotiation arts, and long-term strategy planning. Previous AI agents surely have proved their capability of handling multi-step games and larger action spaces on tasks involving multiple agents. However, diplomacy involves a staggering magnitude of decision spaces, especially considering the negotiation stage required. Recently, LLM agents have shown their potential for extending the boundary of previous agents on a couple of applications, however, it is still not enough to handle a very long planning period in a complex multi-agent environment. Empowered with cutting-edge LLM technology, we make the first stab to explore AI's upper bound towards a human-like agent for such a highly comprehensive multi-agent mission by combining three core and essential capabilities for stronger LLM-based societal agents: 1) strategic planner with memory and reflection; 2) goal-oriented negotiate with social reasoning; 3) augmenting memory by self-play games to self-evolving without any human in the loop.
Abstract:The increasing demand for computational photography and imaging on mobile platforms has led to the widespread development and integration of advanced image sensors with novel algorithms in camera systems. However, the scarcity of high-quality data for research and the rare opportunity for in-depth exchange of views from industry and academia constrain the development of mobile intelligent photography and imaging (MIPI). Building on the achievements of the previous MIPI Workshops held at ECCV 2022 and CVPR 2023, we introduce our third MIPI challenge including three tracks focusing on novel image sensors and imaging algorithms. In this paper, we summarize and review the Few-shot RAW Image Denoising track on MIPI 2024. In total, 165 participants were successfully registered, and 7 teams submitted results in the final testing phase. The developed solutions in this challenge achieved state-of-the-art erformance on Few-shot RAW Image Denoising. More details of this challenge and the link to the dataset can be found at https://mipichallenge.org/MIPI2024.
Abstract:The generalization of decision-making agents encompasses two fundamental elements: learning from past experiences and reasoning in novel contexts. However, the predominant emphasis in most interactive environments is on learning, often at the expense of complexity in reasoning. In this paper, we introduce CivRealm, an environment inspired by the Civilization game. Civilization's profound alignment with human history and society necessitates sophisticated learning, while its ever-changing situations demand strong reasoning to generalize. Particularly, CivRealm sets up an imperfect-information general-sum game with a changing number of players; it presents a plethora of complex features, challenging the agent to deal with open-ended stochastic environments that require diplomacy and negotiation skills. Within CivRealm, we provide interfaces for two typical agent types: tensor-based agents that focus on learning, and language-based agents that emphasize reasoning. To catalyze further research, we present initial results for both paradigms. The canonical RL-based agents exhibit reasonable performance in mini-games, whereas both RL- and LLM-based agents struggle to make substantial progress in the full game. Overall, CivRealm stands as a unique learning and reasoning challenge for decision-making agents. The code is available at https://github.com/bigai-ai/civrealm.
Abstract:For the task of speech separation, previous study usually treats multi-channel and single-channel scenarios as two research tracks with specialized solutions developed respectively. Instead, we propose a simple and unified architecture - DasFormer (Deep alternating spectrogram transFormer) to handle both of them in the challenging reverberant environments. Unlike frame-wise sequence modeling, each TF-bin in the spectrogram is assigned with an embedding encoding spectral and spatial information. With such input, DasFormer is then formed by multiple repetition of simple blocks each of which integrates 1) two multi-head self-attention (MHSA) modules alternately processing within each frequency bin & temporal frame of the spectrogram 2) MBConv before each MHSA for modeling local features on the spectrogram. Experiments show that DasFormer has a powerful ability to model the time-frequency representation, whose performance far exceeds the current SOTA models in multi-channel speech separation, and also achieves single-channel SOTA in the more challenging yet realistic reverberation scenario.
Abstract:Semi-supervised semantic segmentation has recently gained increasing research interest as it can reduce the requirement for large-scale fully-annotated training data by effectively exploiting large amounts of unlabelled data. The current methods often suffer from the confirmation bias from the pseudo-labelling process, which can be alleviated by the co-training framework. The current co-training-based semi-supervised semantic segmentation methods rely on hand-crafted perturbations to prevent the different sub-nets from collapsing into each other, but these artificial perturbations cannot lead to the optimal solution. In this work, we propose a new conflict-based cross-view consistency (CCVC) method based on a two-branch co-training framework for semi-supervised semantic segmentation. Our work aims at enforcing the two sub-nets to learn informative features from irrelevant views. In particular, we first propose a new cross-view consistency (CVC) strategy that encourages the two sub-nets to learn distinct features from the same input by introducing a feature discrepancy loss, while these distinct features are expected to generate consistent prediction scores of the input. The CVC strategy helps to prevent the two sub-nets from stepping into the collapse. In addition, we further propose a conflict-based pseudo-labelling (CPL) method to guarantee the model will learn more useful information from conflicting predictions, which will lead to a stable training process. We validate our new semi-supervised semantic segmentation approach on the widely used benchmark datasets PASCAL VOC 2012 and Cityscapes, where our method achieves new state-of-the-art performance.
Abstract:In this paper we propose a multi-modal multi-correlation learning framework targeting at the task of audio-visual speech separation. Although previous efforts have been extensively put on combining audio and visual modalities, most of them solely adopt a straightforward concatenation of audio and visual features. To exploit the real useful information behind these two modalities, we define two key correlations which are: (1) identity correlation (between timbre and facial attributes); (2) phonetic correlation (between phoneme and lip motion). These two correlations together comprise the complete information, which shows a certain superiority in separating target speaker's voice especially in some hard cases, such as the same gender or similar content. For implementation, contrastive learning or adversarial training approach is applied to maximize these two correlations. Both of them work well, while adversarial training shows its advantage by avoiding some limitations of contrastive learning. Compared with previous research, our solution demonstrates clear improvement on experimental metrics without additional complexity. Further analysis reveals the validity of the proposed architecture and its good potential for future extension.